FACULTY OF ENGINEERING

Departrment of Electrical & ECE 150 Fundamentals of Programming

?mputer Engineering

@ UNIVERSITY OF WATERLOO _— ‘ &

r
»

Douglas Wilhelm Harder, M.Math., LEL
Prof. Hiren Patel, Ph.D., P.Eng.
Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.
Some rights reserved.

UNIVERSITY OF WATERLO@
FACULEY OF ENGINEERING
Department of Electrical &

Computer Engineering

-

Outline

e In this lesson, we will:
— Define binary arithmetic operators
 Addition, subtraction, multiplication and division
 Integer division
« Remainder/modulus operator
« Conversion of integers to floating-point
— Look at order of operations
 Standard conversions and order of operations
— Consider initialization of and assignment to local variables
— Describe the unary arithmetic operators
* Negation and “+”

L &
y N 1 ' ’ i 4

Eﬁ’ UNIVERSITY OF WATERLO® s v, A = b ™ N /

FACULEY OF ENGINEERIN - % 1 Arlthmetlc ()

Departfment of Electrical &
- Computer Engineering

Arithmetic operations

 Most engineering computations involve simulations of the real
world, requiring the application of mathematics and modelling

— The A380 double-decker jumbo jet was simulated entirely in
software prior to being built for the first time...

— Processors and circuits are simulated using mathematical models

» Here we see a mathematical model of a quantum socket [1]:
|E — Field|

UNIVERSITY OF WATERLO@
FACUIinY OF ENGINEERING
Department of Electrical & y

Computer Engineering

Arithmetic operations

* A binary arithmetic operator takes two numerical operands and

evaluates that arithmetic operation binary operator

— The operands may be integers or floating-point \
— They may be literals or local variables ':T)’ }5
operands

« The available binary arithmetic operators are

Operation Operator Integers Floating-point
Addition + 3 +5 3.2 + 7.3
Subtraction - 7 - 6 9.5 - 4.1
Multiplication X 8*9 1.5%2.7
Division = 1/2 4.5/9.6
Remainder n/a 5%3 -

Note: For clarity, it is usual to place spaces around + and -
but no spaces around * / or %

5 . N
£ Arithmetic ©

@ of Electrica
% Computer Engineering

.

Arithmetic expression

* An arithmetic expression is any combination of operands combined
with arithmetic operators

7.5
X*x + 1
6.0*width*height
pi*radius*radius
n*(n + 1)/2.0
n*n*(n + 1)*(n + 1)/4.0;

» Arithmetic expressions can be:
— Printed
— Used to initialize local variables
— Assigned to local variables

@ ol :
! Computer Engineering

Arithmetic operations

« Juxtaposition is never acceptable to represent multiplication

2X° —3XY + 4y’ —— 2.0%x*x - 3.0%x*y + 4.0%y*y

« If you entered 2xx - 3xy + 4yy, this would result in the compiler
signalling an error

— 2xx is neither a valid integer, floating-point number or identifier

« There is no operator for exponentiation

— Exponentiation requires a function call to a C++ library
— More on this later...

@ of Electrica
% Computer Engineering

.

Order of operations

» The compiler uses the same rules from secondary school:
— Multiplication and division before addition and subtraction
 In all cases, evaluations go from left to right
X +y/2.06 + z/a /b *c
(x + y/2.0) + ((z/a)/b)*c

— Parentheses can be used either
» To enforce a different order of operations
 To clarify your intended order of operations

W UNIVERSITY OF WATERLO®@
AS FACULEY OF ENGINEERIN
v Department of Electrical &

W Computer Engineering
-

Order of operations

##tinclude <iostream>

// Function declarations
int main();

// Function definitions
int main() {

std::cout << (1 + 2 +3 +4*5*6+ 7+ 8+ 9) << std::endl;
std::cout << (1 * 2 *3 +4 *5 *6 + 7+ 8+ 9) << std::endl;
std::cout << (1 * 2 *3 *4 *5 4+ 6+ 7+ 8+ 9) << std::endl;
std::cout << (1 * 2 *3 * 4 *5 -6*7 + 8 * 9) << std::endl;

return 0;

-

il

Computer Engineering

Order of operations

« It is paramount to remember that parentheses can be used either to
emphasize or enforce the order in which operations are performed

« Common mistakes include:
k/m*n when they mean k/(m*n) or k/m/n
k/m+n when they mean k/(m + n)
k+m/n when theymean (k + m)/n

« Intwo cases, spacing would help you see what is going on:
k/m+n k/m + n
k+m/n k + m/n

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Department of Electrical &

» . Computer Engineering

.

Initialization

« Arithmetic expressions can be used to initialize a local variable:
#include <iostream>

// Function declarations Output:

int main(); Enter a value of x:6.52
2

// Function definitions X - 2Xx + 1 = 30.4704

int main() {
double x{};
std::cout << "Enter a value of x: ";
std::cin >> Xx;

double y{ x*x - 2.0*x + 1.0 };

std::cout << " 2" << std::endl;
std::cout << "x - 2x + 1 =" << y << std::endl;
return 0;

W UNIVERSITY OF WATERLO® e
AS FACULEY OF ENGINEERIN -
@ Department of Electrical &

Computer Engineering

-

Assignment

» Another example of initialization:
// Function definitions
int main() {
double radius{};

std::cout << "Enter the radius of a sphere: ";

std::cin >> radius;

double pi{3.1415926535897932}; // 17 digits of precision
double volume{ 4.0/3.0*pi*radius*radius*radius };

std::cout << "The volume of the sphere is << volume << std::endl;
double area{ 4.0*pi*radius*radius };
std::cout << "The surface area is "<< area << std::endl;

return 0; (DUIPUt:
} Enter a radius of a sphere: 1.5

The volume of the sphere is 14.1372
The surface area is 28.2743

W UNIVERSITY OF WATERLO®

AS FACULEY OF ENGINEERIN! -
@ Department of Electrical &
- Computer Engineering ‘

-

Assignment

» This also works, but is less pleasing...
// Function definitions
int main() {
double radius{};
std::cout << "Enter the radius of a sphere: ";
std::cin >> radius;

double pi{3.1415926535897932};
std::cout << "The volume of the sphere is
<< (4.9/3.0*pi*radius*radius*radius) << std::endl;

std::cout << "The surface area is "<< (4.0*pi*radius*radius)
<< std::endl;

return 0;

UNIVERSITY OF WATERLO®@
FACULEY OF ENGINEERING
Deparfment of Electrical &

L Computer Engineering

“

Assignment

« The result can also be assigned to a local variable:
int main() {
double x{};
std::cout << "Enter a value of x: ";
std::cin >> x;

double y{};
std::cout << "Enter an approximation of sgrt(x): ";
std::cin >> y;

y = (y + x/y)/2.0;
std::cout << "A better approximation of sqrt(" << x << ") ="
<< y << std::endl;

y = (y + x/y)/2.0;
std::cout << "An even better approximation of sqrt(" << x << ") ="
<< y << std::endl;

return 0;

W UNIVERSITY OF WATERLO ‘
€Y Depa
‘ omputer Engineerin ‘

Assignment

« Executing this program:

Enter a value of x: 3.5
Enter an approximation of sqrt(x): 1.8
A better approximation of sqrt(3.5) = 1.87222

A even better approximation of sqrt(3.5) = 1.87083

V3.5 ~1.8708286933869/707

y = (y + x/y)/2.0;
std::cout << "A better approximation of sgrt(" << x << ") =
<< y << std::endl;

y = (y + x/y)/2.0;
std::cout << "A even better approximation of sqgrt(" << x << ") =
<< y << std::endl;

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING
Deparfment of Electrical &

Computer Engineering

Assignment

» The left-hand side of an assignment operator
must be a local variable

— You cannot assign to an arithmetic expression
2.0*x + 1.0 =y - 1.0;
x = (y - 2.0)/2.0;

— Again, we emphasize, always read the above as
“x 1s assigned the value of y minus two all divided by two.”

UNIVERSITY OF WATERLO@ "~
FACUI#HY OF ENGINEERING i
Deparfment of Electrical &

L Computer Engineering . K

.

Integer division

 In C++, the result of an arithmetic operation on integers must
produce an integer

— This is a problem for division

std::cout <« (1/2) << std::endl; // outputs ©
std::cout << (7/3) << std::endl; // outputs 2
std::cout << (-11/4) << std::endl; // outputs -2
std::cout << (188/13) << std::endl; // outputs 14

» The result is the quotient discarding any remainder

0 14 3 35+

13 15

@ ol | :
Computer Engineering

.

Order of operations

» Here are some further examples that depend on integer division:
std::cout << (1 /2 +3 *4+5*6*7 -8*9) < std::endl;
std::cout <« (1 +2 *3 *4 /5 *6*7 * 8/ 9) < std::endl;
std::cout << (1 *2 +3 +4 *5 *6 /7 * 8+ 9) << std::endl;

* For example:
(1/2)+((3*4)+ (5*6 *7)-(8*09)
(%] + 12 + 210 - 72 = 150

Integer remainder

« Recall that in long division, you find the quotient and the remainder

quotient

'4
164

32%

—32
205
—192
137
—128

/9

remainder

59257 =164-32+9

5257

9

20 164+ —

32

32

.

@ ol | :
Computer Engineering

Integer remainder

To find the remainder of a division, use the modulus operator %

— Also called the remainder operator

std::
std:
std:
std:

cout <<

ccout <«
rcout <«
ccout <«

(1% 2) <<
(7 % 3) <<
(-11 % 4) <<
(-175 % -13) <<

std:
std:
std:
std:

:endl;
:endl;
:endl;
:endl;

For any integers m and n, it is always true that

(n/m)*m + n%m equals n

//
//
//
//

outputs 1
outputs 1
outputs -3
outputs -6

UNIVERSITY OF WATERLO@ "~
FACUI#HY OF ENGINEERING i
Deparfment of Electrical &

L Computer Engineering . K

.

Integer remainder

» Let’s take a closer look at:
(n/m)*m + n%m

* Don’t we know from mathematics that as long as m # 0,

n
—-m=n ?
m

* C++ evaluates one operation at a time
— Ifthe compiler sees (7/3)*3,
o It first will have (7/3) calculated, which evaluates to 2
« It then proceeds to calculate 2*3 which is 6

3 s
@ UNIVERSITY OF WATERLO@ g \
FACULEY OF ENGINEERING
Depgrlinent of Electrical & . -
% Computer Engineering .

Spacing around operators

 In C++, you can put any amount of whitespace between operators
and their operands:

std::cout << ((n/m)*m + n%m);
std::cout << ((n/m)*m+n%m);
std: :cout <<

n% m)

 Werecommend:
— Putting one space between operands and + and -
— Juxtaposing operands with *, / and % operands
« Forcing your self soon makes it habitual
— You will not even think about it when you type...

@ of Electrica
% Computer Engineering

.

Standard conversions

* Suppose the compiler sees:
3.5/2
* Does it use floating-point division, or integer division?
— The only way for this to make sense is for the compiler to interpret
the 2 as a floating-point number
— This process is called a standard conversion
« Conversion of literals is performed by the compiler

UNIVERSITY OF WATERLO@

FACULEY OF ENGINEERING

Dewﬂnent of Electrical & 4
% Computer Engineering 1

Order of operations and conversions

« Again, C++ is very exact when standard conversions occurs:

— Only when one operand is a floating-point number and the other is
an integer is the integer converted to a floating-point number

« What is the output of each of the following? Why?
std::cout << (10.0 + 3.0/(9/2)) << std::endl;
std::cout << (10.0 + 3.0/9%*2) << std::endl;
std::cout << (10.0 + 3/(9/2.0)) << std::endl;

A

Unary operators

« A unary operator has only one operand
— For example, from secondary school, the

(13 B2
!

1s a unitary operator
* It only takes one operands, e.g., 5!

» There are two unary operators for arithmetic:

— Unary negation operator changes the sign of what follows:
std::cout << -(1 + 2 + 3) << std::endl;
std::cout << -(2*3*4) << std::endl;
std::cout << -(1 + 2*3) << std::endl;

— Unary neutral operator ‘+’ leaves the sign unchanged:
std::cout << +(1 + 2 - 5) << std::endl;
std::cout << +(-2*3*4) << std::endl;
std::cout << +(1 - 2*3) << std::endl;

o
UNIVERSITY OF WATERLO@ "~ ! p f
FACULEY OF ENGINEERING . -
2 Depagtment of Electrical &

" Computer Engineering

.

Standard conversions

« If all of the operands are integers, the result will be an integer:

35

3+6+4+7+1

12%(3 + 6)*(1 - 4)

(5 + 3+ 7)/10;
(56 - 1)*3*%(4 + 1)
-243 + 6

+23

« Ifeven one operand is a float, the result of will be a float:

35.0

3+7+2.94+7+ 1.3

12.5%(5 + 2)*(1.8 - 6)

(3 +2 + 1)/10.5;
(6 - 1.7)*4%(8.9 + 1.7)
-6.4 + 3

+2.7

@ ol | :
Computer Engineering

.

Arithmetic expression

* We can now make the following statements:
— An integer arithmetic expression will always evaluate to an integer
— A floating-point arithmetic expression will always evaluate to a float
— A mixed arithmetic expression will always evaluate to a float

UNIVERSITY OF WATERLO@
FACULEY OF ENGINEERING
Deparfment of Electrical & y

Computer Engineering

Summary

« Following this presentation, you now:

— Understand the binary arithmetic operators in C++
 Addition, subtraction, multiplication and division

— Know that the result can:
« Initialize a local variable
» Be assigned to a local variable

— The effect of integer division and the remainder operator

— Conversion of integers to floating-point

— Understand the order of operations and standard conversions

— Are aware of the two unary arithmetic operators

UNIVERSITY OF WATERLO@
FACULEY OF ENGINEERING
Deparfment of Electrical &

- $

Computer Engineering

References

[1] Thomas McConkey, a simulation of a 6 GHz microwave signal
transmitting through a coaxial pogo pin onto a micro-coplanar
waveguide transmission line of a thin film superconducting
aluminium (i.e., a quantum socket). Developed with the Ansys
software HFSS.

[2] Wikipedia,
https://en.wikipedia.org/wiki/Operators_in_C_and_C++#Arithmetic_operators

[3] cplusplus.com tutorial,
http://www.cplusplus.com/doc/tutorial/operators/
[4] C++ reference,

https://en.cppreference.com/w/cpp/language/operator_arithmetic

W UNIVERSITY OF WATERLO® e
AS FACULEY OF ENGINEERIN -
@ Department of Electrical &

Computer Engineering
-

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

UNIVERSITY OF WATERLO@ =
FACULEY OF ENGINEERING

Department of Electrical &
" Computer Engineering

*

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

